

Core React

1. What is React?

React (aka React.js or ReactJS) is an open-source front-end JavaScript library that is used for building composable user interfaces,

especially for single-page applications. It is used for handling view layer for web and mobile apps based on components in a declarative

approach.

React was created by Jordan Walke, a software engineer working for Facebook. React was first deployed on Facebook's News Feed in 2011

and on Instagram in 2012.

2. What is the history behind React evolution?

The history of ReactJS started in 2010 with the creation of XHP. XHP is a PHP extension which improved the syntax of the language such

that XML document fragments become valid PHP expressions and the primary purpose was used to create custom and reusable HTML

elements.

The main principle of this extension was to make front-end code easier to understand and to help avoid cross-site scripting attacks. The

project was successful to prevent the malicious content submitted by the scrubbing user.

But there was a different problem with XHP in which dynamic web applications require many roundtrips to the server, and XHP did not

solve this problem. Also, the whole UI was re-rendered for small change in the application. Later, the initial prototype of React is created

with the name FaxJ by Jordan inspired from XHP. Finally after sometime React has been introduced as a new library into JavaScript world.

Note: JSX comes from the idea of XHP

3. What are the major features of React?

The major features of React are:

 Uses JSX syntax, a syntax extension of JS that allows developers to write HTML in their JS code.

 It uses Virtual DOM instead of Real DOM considering that Real DOM manipulations are expensive.

 Supports server-side rendering which is useful for Search Engine Optimizations(SEO).

 Follows Unidirectional or one-way data flow or data binding.

 Uses reusable/composable UI components to develop the view.

4. What is JSX?

JSX stands for JavaScript XML and it is an XML-like syntax extension to ECMAScript. Basically it just provides the syntactic sugar for the

function, giving us expressiveness of JavaScript along with HTML like template syntax.

In the example below, the text inside tag is returned as JavaScript function to the render function.

If you don't use JSX syntax then the respective JavaScript code should be written as below,

https://github.com/jordwalke

 See Class

Note: JSX is stricter than HTML

5. What is the difference between Element and Component?

An Element is a plain object describing what you want to appear on the screen in terms of the DOM nodes or other components. Elements

can contain other Elements in their props. Creating a React element is cheap. Once an element is created, it cannot be mutated.

The JavaScript representation(Without JSX) of React Element would be as follows:

and this element can be simiplified using JSX

The above function returns an object as below:

Finally, this element renders to the DOM using ReactDOM.render() .

Whereas a component can be declared in several different ways. It can be a class with a

function. In either case, it takes props as an input, and returns a JSX tree as the output:

method or it can be defined as a

Then JSX gets transpiled to a function tree:

6. How to create components in React?

Components are the building blocks of creating User Interfaces(UI) in React. There are two possible ways to create a component.

i. Function Components: This is the simplest way to create a component. Those are pure JavaScript functions that accept props object

as the one and only one parameter and return React elements to render the output:

ii. Class Components: You can also use ES6 class to define a component. The above function component can be written as a class

component:

7. When to use a Class Component over a Function Component?

After the addition of Hooks(i.e. React 16.8 onwards) it is always recommended to use Function components over Class components in

React. Because you could use state, lifecycle methods and other features that were only available in class component present in function

component too.

But even there are two reasons to use Class components over Function components.

i. If you need a React functionality whose Function component equivalent is not present yet, like Error Boundaries.

ii. In older versions, If the component needs state or lifecycle methods then you need to use class component.

So the summary to this question is as follows:

Use Function Components:

 If you don't need state or lifecycle methods, and your component is purely presentational.

 For simplicity, readability, and modern code practices, especially with the use of React Hooks for state and side effects.

Use Class Components:

 If you need to manage state or use lifecycle methods.

 In scenarios where backward compatibility or integration with older code is necessary.

Note: You can also use reusable react error boundary third-party component without writing any class. i.e, No need to use class

components for Error boundaries.

The usage of Error boundaries from the above library is quite straight forward.

Note when using react-error-boundary: ErrorBoundary is a client component. You can only pass props to it that are serializeable or

use it in files that have a directive.

8. What are Pure Components?

Pure components are the components which render the same output for the same state and props. In function components, you can

achieve these pure components through memoized API wrapping around the component. This API prevents unnecessary

re-renders by comparing the previous props and new props using shallow comparison. So it will be helpful for performance optimizations.

But at the same time, it won't compare the previous state with the current state because function component itself prevents the

unnecessary rendering by default when you set the same state again.

The syntactic representation of memoized components looks like below,

Below is the example of how child component(i.e., EmployeeProfile) prevents re-renders for the same props passed by parent

component(i.e.,EmployeeRegForm).

https://github.com/bvaughn/react-error-boundary

In the above code, the email prop has not been passed to child component. So there won't be any re-renders for email prop change.

In class components, the components extending instead of become the pure components. When

props or state changes, PureComponent will do a shallow comparison on both props and state by invoking

lifecycle method.

Note: is a higher-order component.

9. What is state in React?

State of a component is an object that holds some information that may change over the lifetime of the component. The important point is

whenever the state object changes, the component re-renders. It is always recommended to make our state as simple as possible and

minimize the number of stateful components.

Let's take an example of User component with state. Here, useState hook has been used to add state to the User component and

it returns an array with current state and function to update it.

https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/state.jpg
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/state.jpg
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/state.jpg
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/state.jpg
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/state.jpg
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/state.jpg
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/state.jpg
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/state.jpg
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/state.jpg
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/state.jpg

Whenever React calls your component or access

 See Class

hook, it gives you a snapshot of the state for that particular render.

State is similar to props, but it is private and fully controlled by the component ,i.e., it is not accessible to any other component till the

owner component decides to pass it.

10. What are props in React?

Props are inputs to components. They are single values or objects containing a set of values that are passed to components on creation

similar to HTML-tag attributes. Here, the data is passed down from a parent component to a child component.

The primary purpose of props in React is to provide following component functionality:

i. Pass custom data to your component.

ii. Trigger state changes.

iii. Use via inside component's method.

For example, let us create an element with property:

This (or whatever you came up with) attribute name then becomes a property attached to React's native props object which

originally already exists on all components created using React library.

For example, the usage of props in function component looks like below:

The properties from props object can be accessed directly using destructing feature from ES6 (ECMAScript 2015). It is also possible to fallback

to default value when the prop value is not specified. The above child component can be simplified like below.

Note: The default value won't be used if you pass

value has been passed.

 See Class

or value. i.e, default value is only used if the prop value is missed or

11. What is the difference between state and props?

In React, both and are plain JavaScript objects and used to manage the data of a component, but they are used in different

ways and have different characteristics.

The entity is managed by the component itself and can be updated using the setter(setState() for class components) function.

Unlike props, state can be modified by the component and is used to manage the internal state of the component. i.e, state acts as a

component's memory. Moreover, changes in the state trigger a re-render of the component and its children. The components cannot

become reusable with the usage of state alone.

On the otherhand, (short for "properties") are passed to a component by its parent component and are read-only , meaning that

they cannot be modified by the own component itself. i.e, props acts as arguments for a function. Also, props can be used to configure the

behavior of a component and to pass data between components. The components become reusable with the usage of props.

12. What is the difference between HTML and React event handling?

Below are some of the main differences between HTML and React event handling,

i. In HTML, the event name usually represents in lowercase as a convention:

Whereas in React it follows camelCase convention:

ii. In HTML, you can return to prevent default behavior:

Whereas in React you must call explicitly:

iii. In HTML, you need to invoke the function by appending

(refer "activateLasers" function in the first point for example)

13. What are synthetic events in React?

Whereas in react you should not append with the function name.

SyntheticEvent is a cross-browser wrapper around the browser's native event. Its API is same as the browser's native event, including

stopPropagation() and preventDefault() , except the events work identically across all browsers. The native events can be accessed

directly from synthetic events using nativeEvent attribute.

Let's take an example of BookStore title search component with the ability to get all native event properties

14. What are inline conditional expressions?

You can use either if statements or ternary expressions which are available from JS to conditionally render expressions. Apart from these

approaches, you can also embed any expressions in JSX by wrapping them in curly braces and then followed by JS logical operator && .

15. What is "key" prop and what is the benefit of using it in arrays of elements?

A is a special attribute you should include when mapping over arrays to render data. Key prop helps React identify which items have

changed, are added, or are removed.

Keys should be unique among its siblings. Most often we use ID from our data as key:

When you don't have stable IDs for rendered items, you may use the item index as a key as a last resort:

Note:

i. Using indexes for keys is not recommended if the order of items may change. This can negatively impact performance and may cause

issues with component state.

ii. If you extract list item as separate component then apply keys on list component instead of tag.

iii. There will be a warning message in the console if the prop is not present on list items.

iv. The key attribute accepts either string or number and internally convert it as string type.

v. Don't generate the key on the fly something like key={Math.random()} . Because the keys will never match up between re-renders and

DOM created everytime.

16. What is Virtual DOM?

The Virtual DOM (VDOM) is an in-memory representation of Real DOM. The representation of a UI is kept in memory and synced with the

"real" DOM. It's a step that happens between the render function being called and the displaying of elements on the screen. This entire

process is called reconciliation.

17. How Virtual DOM works?

The Virtual DOM works in three simple steps.

i. Whenever any underlying data changes, the entire UI is re-rendered in Virtual DOM representation.

ii. Then the difference between the previous DOM representation and the new one is calculated.

iii. Once the calculations are done, the real DOM will be updated with only the things that have actually changed.

18. What is the difference between Shadow DOM and Virtual DOM?

The Shadow DOM is a browser technology designed primarily for scoping variables and CSS in web components. The Virtual DOM is a

concept implemented by libraries in JavaScript on top of browser APIs.

19. What is React Fiber?

Fiber is the new reconciliation engine or reimplementation of core algorithm in React v16. The goal of React Fiber is to increase its

suitability for areas like animation, layout, gestures, ability to pause, abort, or reuse work and assign priority to different types of updates;

and new concurrency primitives.

20. What is the main goal of React Fiber?

The goal of React Fiber is to increase its suitability for areas like animation, layout, and gestures. Its headline feature is incremental

rendering: the ability to split rendering work into chunks and spread it out over multiple frames.

from documentation

https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/vdom2.png
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/vdom3.png
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/vdom1.png
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/vdom2.png
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/vdom3.png
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/vdom1.png
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/vdom2.png
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/vdom3.png
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/vdom1.png
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/vdom2.png
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/vdom3.png
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/vdom1.png
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/vdom2.png
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/vdom3.png
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/vdom1.png

setUsername(e.target.value);

Its main goals are:

i. Ability to split interruptible work in chunks.

ii. Ability to prioritize, rebase and reuse work in progress.

iii. Ability to yield back and forth between parents and children to support layout in React.

iv. Ability to return multiple elements from render().

v. Better support for error boundaries.

21. What are controlled components?

A component that controls the input elements within the forms on subsequent user input is called Controlled Component, i.e, every state

mutation will have an associated handler function. That means, the displayed data is always in sync with the state of the component.

The controlled components will be implemented using the below steps,

i. Initialize the state using use state hooks in function components or inside constructor for class components.

ii. Set the value of the form element to the respective state variable.

iii. Create an event handler to handle the user input changes through useState updater function or setState from class component.

iv. Attach the above event handler to form elements change or click events

For example, the name input field updates the user name using event handler as below,

22. What are uncontrolled components?

The Uncontrolled Components are the ones that store their own state internally, and you query the DOM using a ref to find its current

value when you need it. This is a bit more like traditional HTML.

The uncontrolled components will be implemented using the below steps,

i. Create a ref using useRef react hook in function component or

ii. Attach this ref to the form element.

iii. The form element value can be accessed directly through

in event handlers or

in class based component.

for class components

In the below UserProfile component, the input is accessed using ref.

In most cases, it's recommend to use controlled components to implement forms. In a controlled component, form data is handled by a

React component. The alternative is uncontrolled components, where form data is handled by the DOM itself.

 See Class

23. What is the difference between createElement and cloneElement?

JSX elements will be transpiled to React.createElement() functions to create React elements which are going to be used for the object

representation of UI. Whereas cloneElement is used to clone an element and pass it new props.

24. What is Lifting State Up in React?

When several components need to share the same changing data then it is recommended to lift the shared state up to their closest

common ancestor. That means if two child components share the same data from its parent, then move the state to parent instead of

maintaining local state in both of the child components.

25. What are Higher-Order Components?

A higher-order component (HOC) is a function that takes a component and returns a new component. Basically, it's a pattern that is derived

from React's compositional nature.

We call them pure components because they can accept any dynamically provided child component but they won't modify or copy any

behavior from their input components.

HOC can be used for many use cases:

i. Code reuse, logic and bootstrap abstraction.

ii. Render hijacking.

iii. State abstraction and manipulation.

iv. Props manipulation.

26. What is children prop?

Children is a prop that allows you to pass components as data to other components, just like any other prop you use. Component tree put

between component's opening and closing tag will be passed to that component as

A simple usage of children prop looks as below,

prop.

 See Class

Note: There are several methods available in the legacy React API to work with this prop. These include React.Children.map ,

React.Children.forEach , React.Children.count , React.Children.only , React.Children.toArray .

27. How to write comments in React?

The comments in React/JSX are similar to JavaScript Multiline comments but are wrapped in curly braces.

Single-line comments:

Multi-line comments:

28. What is reconciliation?

Reconciliation is the process through which React updates the Browser DOM and makes React work faster. React use a diffing

algorithm so that component updates are predictable and faster. React would first calculate the difference between the real DOM and the

copy of DOM (Virtual DOM) when there's an update of components. React stores a copy of Browser DOM which is called Virtual DOM .

When we make changes or add data, React creates a new Virtual DOM and compares it with the previous one. This comparison is done by

Diffing Algorithm . Now React compares the Virtual DOM with Real DOM. It finds out the changed nodes and updates only the changed

nodes in Real DOM leaving the rest nodes as it is. This process is called Reconciliation.

29. Does the lazy function support named exports?

No, currently function supports default exports only. If you would like to import modules which are named exports, you can

create an intermediate module that reexports it as the default. It also ensures that tree shaking keeps working and don’t pull unused

components. Let's take a component file which exports multiple named components,

and reexport components in an intermediate file

Now you can import the module using lazy function as below,

30. Why React uses

over

attribute?

className class

The attribute names written in JSX turned into keys of JavaScript objects and the JavaScript names cannot contain dashes or reversed

words, it is recommended to use camelCase whereever applicable in JSX code. The attribute is a keyword in JavaScript, and JSX is

an extension of JavaScript. That's the principle reason why React uses instead of . Pass a string as the prop.

31. What are fragments?

It's a common pattern or practice in React for a component to return multiple elements. Fragments let you group a list of children without

adding extra nodes to the DOM. You need to use either or a shorter syntax having empty tag (<></>).

Below is the example of how to use fragment inside Story component.

It is also possible to render list of fragments inside a loop with the mandatory key attribute supplied.

Usually, you don't need to use until there is a need of key attribute. The usage of shorter syntax looks like below.

32. Why fragments are better than container divs?

Below are the list of reasons to prefer fragments over container DOM elements,

i. Fragments are a bit faster and use less memory by not creating an extra DOM node. This only has a real benefit on very large and

deep trees.

ii. Some CSS mechanisms like Flexbox and CSS Grid have a special parent-child relationships, and adding divs in the middle makes it hard

to keep the desired layout.

iii. The DOM Inspector is less cluttered.

33. What are portals in React?

Portal is a recommended way to render children into a DOM node that exists outside the DOM hierarchy of the parent component. When

using CSS transform in a component, its descendant elements should not use fixed positioning, otherwise the layout will blow up.

The first argument is any render-able React child, such as an element, string, or fragment. The second argument is a DOM element.

34. What are stateless components?

If the behaviour of a component is independent of its state then it can be a stateless component. You can use either a function or a class

for creating stateless components. But unless you need to use a lifecycle hook in your components, you should go for function

components. There are a lot of benefits if you decide to use function components here; they are easy to write, understand, and test, a little

faster, and you can avoid the keyword altogether.

35. What are stateful components?

If the behaviour of a component is dependent on the state of the component then it can be termed as stateful component. These stateful

components are either function components with hooks or class components.

Let's take an example of function stateful component which update the state based on click event,

 See Class

36. How to apply validation on props in React?

When the application is running in development mode, React will automatically check all props that we set on components to make sure

they have correct type. If the type is incorrect, React will generate warning messages in the console. It's disabled in production mode due to

performance impact. The mandatory props are defined with isRequired .

The set of predefined prop types:

i.

ii.

iii.

iv.

v.

vi.

vii.

viii.

ix.

x.

We can define for component as below:

ReactDOM.createPortal(child, container);

prop-types

react-dom

Note: In React v15.5 PropTypes were moved from

The Equivalent Functional Component

to library.

37. What are the advantages of React?

Below are the list of main advantages of React,

i. Increases the application's performance with Virtual DOM.

ii. JSX makes code easy to read and write.

iii. It renders both on client and server side (SSR).

iv. Easy to integrate with frameworks (Angular, Backbone) since it is only a view library.

v. Easy to write unit and integration tests with tools such as Jest.

38. What are the limitations of React?

Apart from the advantages, there are few limitations of React too,

i. React is just a view library, not a full framework.

ii. There is a learning curve for beginners who are new to web development.

iii. Integrating React into a traditional MVC framework requires some additional configuration.

iv. The code complexity increases with inline templating and JSX.

v. Too many smaller components leading to over engineering or boilerplate.

39. What are the recommended ways for static type checking?

Normally we use PropTypes library (React.PropTypes moved to a package since React v15.5) for type checking in the React

applications. For large code bases, it is recommended to use static type checkers such as Flow or TypeScript, that perform type checking at

compile time and provide auto-completion features.

40. What is the use of package?

 prop-types

react-dom

The package provides DOM-specific methods that can be used at the top level of your app. Most of the components are not

required to use this module. Some of the methods of this package are:

i.

ii.

iii.

iv.

v.

41. What is ReactDOMServer?

The object enables you to render components to static markup (typically used on node server). This object is mainly used

for server-side rendering (SSR). The following methods can be used in both the server and browser environments:

i.

ii.

For example, you generally run a Node-based web server like Express, Hapi, or Koa, and you call

component to a string, which you then send as response.

to render your root

42. How to use innerHTML in React?

The attribute is React's replacement for using in the browser DOM. Just like innerHTML , it is risky to

use this attribute considering cross-site scripting (XSS) attacks. You just need to pass a object as key and HTML text as value.

In this example MyComponent uses attribute for setting HTML markup:

43. How to use styles in React?

The attribute accepts a JavaScript object with camelCased properties rather than a CSS string. This is consistent with the DOM style

JavaScript property, is more efficient, and prevents XSS security holes.

unmountComponentAtNode()

if-else

node.style.backgroundImage).

Style keys are camelCased in order to be consistent with accessing the properties on DOM nodes in JavaScript (e.g.

 _

44. How events are different in React?

Handling events in React elements has some syntactic differences:

i. React event handlers are named using camelCase, rather than lowercase.

ii. With JSX you pass a function as the event handler, rather than a string.

45. What is the impact of indexes as keys?

Keys should be stable, predictable, and unique so that React can keep track of elements.

In the below code snippet each element's key will be based on ordering, rather than tied to the data that is being represented. This limits

the optimizations that React can do and creates confusing bugs in the application.

If you use element data for unique key, assuming

without needing to reevaluate them as much.

is unique to this list and stable, React would be able to reorder elements

Note: If you don't specify prop at all, React will use index as a key's value while iterating over an array of data.

46. How do you conditionally render components?

In some cases you want to render different components depending on some state. JSX does not render

use conditional short-circuiting to render a given part of your component only if a certain condition is true.

or undefined , so you can

If you need an condition then use ternary operator.

47. Why we need to be careful when spreading props on DOM elements?

When we spread props we run into the risk of adding unknown HTML attributes, which is a bad practice. Instead we can use prop

destructuring with

For example,

operator, so it will add only required props.

ReactDOMServer.renderToString(<App />);

48. How do you memoize a component?

There are memoize libraries available which can be used on function components.

For example library can memoize the component in another component.

Update: Since React v16.6.0, we have a React.memo . It provides a higher order component which memoizes component unless the props

change. To use it, simply wrap the component using React.memo before you use it.

49. How you implement Server Side Rendering or SSR?

React is already equipped to handle rendering on Node servers. A special version of the DOM renderer is available, which follows the same

pattern as on the client side.

This method will output the regular HTML as a string, which can be then placed inside a page body as part of the server response. On the

client side, React detects the pre-rendered content and seamlessly picks up where it left off.

50. How to enable production mode in React?

You should use Webpack's method to set to production , by which it strip out things like propType validation and

extra warnings. Apart from this, if you minify the code, for example, Uglify's dead-code elimination to strip out development only code and

comments, it will drastically reduce the size of your bundle.

51. Do Hooks replace render props and higher order components?

Both render props and higher-order components render only a single child but in most of the cases Hooks are a simpler way to serve this

by reducing nesting in your tree.

52. What is a switching component?

A switching component is a component that renders one of many components. We need to use object to map prop values to components.

 For example, a switching component to display different pages based on prop:

53. What are React Mixins?

Mixins are a way to totally separate components to have a common functionality. Mixins should not be used and can be replaced with

higher-order components or decorators.

One of the most commonly used mixins is PureRenderMixin . You might be using it in some components to prevent unnecessary re-renders

when the props and state are shallowly equal to the previous props and state:

54. What are the Pointer Events supported in React?

Pointer Events provide a unified way of handling all input events. In the old days we had a mouse and respective event listeners to handle

them but nowadays we have many devices which don't correlate to having a mouse, like phones with touch surface or pens. We need to

remember that these events will only work in browsers that support the Pointer Events specification.

The following event types are now available in React DOM:

i.

ii.

iii.

iv.

v.

vi.

vii.

viii.

ix.

x.

55. Why should component names start with capital letter?

If you are rendering your component using JSX, the name of that component has to begin with a capital letter otherwise React will throw

an error as an unrecognized tag. This convention is because only HTML elements and SVG tags can begin with a lowercase letter.

You can define function component whose name starts with lowercase letter, but when it's imported it should have a capital letter. Here

lowercase is fine:

While when imported in another file it should start with capital letter:

56. Are custom DOM attributes supported in React v16?

Yes. In the past, React used to ignore unknown DOM attributes. If you wrote JSX with an attribute that React doesn't recognize, React

would just skip it.

For example, let's take a look at the below attribute:

Would render an empty div to the DOM with React v15:

In React v16 any unknown attributes will end up in the DOM:

This is useful for supplying browser-specific non-standard attributes, trying new DOM APIs, and integrating with opinionated third-party

libraries.

57. How to loop inside JSX?

You can simply use

For example, the

with ES6 arrow function syntax.

array of objects is mapped into an array of components:

But you can't iterate using loop:

This is because JSX tags are transpiled into function calls, and you can't use statements inside expressions. This may change thanks to

expressions which are stage 1 proposal.

58. How do you access props in attribute quotes?

React (or JSX) doesn't support variable interpolation inside an attribute value. The below representation won't work:

But you can put any JS expression inside curly braces as the entire attribute value. So the below expression works:

Using template strings will also work:

59. What is React proptype array with shape?

If you want to pass an array of objects to a component with a particular shape then use

as an argument to

60. How to conditionally apply class attributes?

You shouldn't use curly braces inside quotes because it is going to be evaluated as a string.

Instead you need to move curly braces outside (don't forget to include spaces between class names):

Template strings will also work:

61. What is the difference between React and ReactDOM?

The package contains React.createElement() , React.Component , React.Children , and other helpers related to elements and

component classes. You can think of these as the isomorphic or universal helpers that you need to build components. The

package contains ReactDOM.render() , and in react-dom/server we have server-side rendering support with

ReactDOMServer.renderToString() and ReactDOMServer.renderToStaticMarkup() .

62. Why ReactDOM is separated from React?

The React team worked on extracting all DOM-related features into a separate library called ReactDOM. React v0.14 is the first release in

which the libraries are split. By looking at some of the packages, react-native , react-art , react-canvas , and react-three , it has

become clear that the beauty and essence of React has nothing to do with browsers or the DOM.

React.PropTypes.arrayOf() .

react-dom

To build more environments that React can render to, React team planned to split the main React package into two:

dom . This paves the way to writing components that can be shared between the web version of React and React Native.

63. How to use React label element?

and

If you try to render a element bound to a text input using the standard attribute, then it produces HTML missing that

attribute and prints a warning to the console.

Since is a reserved keyword in JavaScript, use instead.

64. How to combine multiple inline style objects?

You can use spread operator in regular React:

If you're using React Native then you can use the array notation:

65. How to re-render the view when the browser is resized?

You can use the useState hook to manage the width and height state variables, and the

hook to add and remove the

event listener. The [] dependency array passed to useEffect ensures that the effect only runs once (on mount) and not on every re-

render.

Using Class Component

66. How to pretty print JSON with React?

We can use tag so that the formatting of the is retained:

 See Class

 _

67. Why you can't update props in React?

The React philosophy is that props should be immutable(read only) and top-down. This means that a parent can send any prop values to a

child, but the child can't modify received props.

 _

68. How to focus an input element on page load?

You need to use hook to set focus on input field during page load time for functional component.

 See Class

 _

69. How can we find the version of React at runtime in the browser?

You can use to get the version.

 _

70. How to add Google Analytics for React Router?

 Add a listener on the object to record each page view:

 _

71. How do you apply vendor prefixes to inline styles in React?

React does not apply vendor prefixes automatically. You need to add vendor prefixes manually.

 _

72. How to import and export components using React and ES6?

You should use default for exporting the components

 See Class

 _

73. What are the exceptions on React component naming?

The component names should start with an uppercase letter but there are few exceptions to this convention. The lowercase tag names

with a dot (property accessors) are still considered as valid component names. For example, the below tag can be compiled to a valid

component,

 _

74. Is it possible to use async/await in plain React?

If you want to use

a set of transforms.

 _

in React, you will need Babel and transform-async-to-generator plugin. React Native ships with Babel and

75. What are the common folder structures for React?

There are two common practices for React project file structure.

i. Grouping by features or routes:

One common way to structure projects is locate CSS, JS, and tests together, grouped by feature or route.

https://babeljs.io/docs/en/babel-plugin-transform-async-to-generator

ii. Grouping by file type:

Another popular way to structure projects is to group similar files together.

 _

76. What are the popular packages for animation?

React Transition Group and React Motion are popular animation packages in React ecosystem.

 _

77. What is the benefit of styles modules?

It is recommended to avoid hard coding style values in components. Any values that are likely to be used across different UI components

should be extracted into their own modules.

For example, these styles could be extracted into a separate component:

And then imported individually in other components:

 _

78. What are the popular React-specific linters?

ESLint is a popular JavaScript linter. There are plugins available that analyse specific code styles. One of the most common for React is an

npm package called eslint-plugin-react . By default, it will check a number of best practices, with rules checking things from keys in

iterators to a complete set of prop types.

<Router>

Another popular plugin is eslint-plugin-jsx-a11y , which will help fix common issues with accessibility. As JSX offers slightly different

syntax to regular HTML, issues with alt text and tabindex , for example, will not be picked up by regular plugins.

 _

React Router

 _

79. What is React Router?

React Router is a powerful routing library built on top of React that helps you add new screens and flows to your application incredibly

quickly, all while keeping the URL in sync with what's being displayed on the page.

 _

80. How React Router is different from history library?

React Router is a wrapper around the library which handles interaction with the browser's with its browser and

hash histories. It also provides memory history which is useful for environments that don't have global history, such as mobile app

development (React Native) and unit testing with Node.

 _

81. What are the components of React Router v6?

React Router v6 provides below 4 components:

i. <BrowserRouter> :Uses the HTML5 history API for standard web apps.

ii. <HashRouter> :Uses hash-based routing for static servers.

iii. <MemoryRouter> :Uses in-memory routing for testing and non-browser environments.

iv. <StaticRouter> :Provides static routing for server-side rendering (SSR).

The above components will create browser, hash, memory and static history instances. React Router v6 makes the properties and methods

of the

 _

instance associated with your router available through the context in the object.

82. What is the purpose of and methods of history ?

A history instance has two methods for navigation purpose.

i.

ii.

If you think of the history as an array of visited locations,

current location in the array with the new one.

 _

will add a new location to the array and

will replace the

83. How do you programmatically navigate using React Router v4?

There are three different ways to achieve programmatic routing/navigation within components.

i. Using the higher-order function:

The withRouter() higher-order function will inject the history object as a prop of the component. This object provides

replace() methods to avoid the usage of context.

and

push() replace()

ii. Using

The

history prop.

component and render props pattern:

component passes the same props as withRouter() , so you will be able to access the history methods through the

iii. Using context:

This option is not recommended and treated as unstable API.

 _

84. How to get query parameters in React Router v4?

The ability to parse query strings was taken out of React Router v4 because there have been user requests over the years to support

different implementation. So the decision has been given to users to choose the implementation they like. The recommended approach is

to use query strings library.

You can also use if you want something native:

You should use a polyfill for IE11.

 _

85. Why you get "Router may have only one child element" warning?

You have to wrap your Route's in a block because is unique in that it renders a route exclusively.

At first you need to add to your imports:

Then define the routes within block:

 _

86. How to pass params to

While navigating you can pass props to the

method in React Router v4?

object:

The

 _

property is used to pass query params in method.

87. How to implement default or NotFound page?

A renders the first child that matches. A with no path always matches. So you just need to simply drop path

attribute as below

 _

88. How to get history on React Router v4?

Below are the list of steps to get history object on React Router v4,

i. Create a module that exports a

For example, create

file:

object and import this module across the project.

ii. You should use the component instead of built-in routers. Import the above inside file:

iii. You can also use push method of object similar to built-in history object:

history.push

 _

89. How to perform automatic redirect after login?

The package provides component in React Router. Rendering a will navigate to a new location.

Like server-side redirects, the new location will override the current location in the history stack.

 See Class

 _

React Internationalization

90. What is React Intl?

The React Intl library makes internationalization in React straightforward, with off-the-shelf components and an API that can handle

everything from formatting strings, dates, and numbers, to pluralization. React Intl is part of FormatJS which provides bindings to React via

its components and API.

 _

91. What are the main features of React Intl?

Below are the main features of React Intl,

i. Display numbers with separators.

ii. Display dates and times correctly.

iii. Display dates relative to "now".

iv. Pluralize labels in strings.

v. Support for 150+ languages.

vi. Runs in the browser and Node.

vii. Built on standards.

 _

92. What are the two ways of formatting in React Intl?

The library provides two ways to format strings, numbers, and dates:

i. Using react components:

ii. Using an API:

react-router

 _

93. How to use

The

as placeholder using React Intl?

components from react-intl return elements, not plain text, so they can't be used for placeholders, alt text, etc.

In that case, you should use lower level API formatMessage() . You can inject the object into your component using

higher-order component and then format the message using formatMessage() available on that object.

 _

94. How to access current locale with React Intl?

You can get the current locale in any component of your application using injectIntl() :

 _

95. How to format date using React Intl?

<FormattedMessage>

 _

React Testing

96. What is Shallow Renderer in React testing?

Shallow rendering is useful for writing unit test cases in React. It lets you render a component one level deep and assert facts about what its

render method returns, without worrying about the behavior of child components, which are not instantiated or rendered.

For example, if you have the following component:

Then you can assert as follows:

 _

97. What is

package in React?

This package provides a renderer that can be used to render components to pure JavaScript objects, without depending on the DOM or a

native mobile environment. This package makes it easy to grab a snapshot of the platform view hierarchy (similar to a DOM tree) rendered

by a ReactDOM or React Native without using a browser or jsdom .

 _

98. What is the purpose of ReactTestUtils package?

ReactTestUtils are provided in the

testing.

 _

99. What is Jest?

package and allow you to perform actions against a simulated DOM for the purpose of unit with-addons

TestRenderer

http://www.facebook.com/
http://www.facebook.com/%27

Jest is a JavaScript unit testing framework created by Facebook based on Jasmine and provides automated mock creation and a

environment. It's often used for testing components.

 _

100. What are the advantages of Jest over Jasmine?

There are couple of advantages compared to Jasmine:

 Automatically finds tests to execute in your source code.

 Automatically mocks dependencies when running your tests.

 Allows you to test asynchronous code synchronously.

 Runs your tests with a fake DOM implementation (via jsdom) so that your tests can be run on the command line.

 Runs tests in parallel processes so that they finish sooner.

 _

101. Give a simple example of Jest test case

Let's write a test for a function that adds two numbers in file:

Create a file named which contains actual test:

And then add the following section to your package.json :

Finally, run or and Jest will print a result:

React Redux

 _

102. What is flux?

Flux is an application design paradigm used as a replacement for the more traditional MVC pattern. It is not a framework or a library but a

new kind of architecture that complements React and the concept of Unidirectional Data Flow. Facebook uses this pattern internally when

working with React.

The workflow between dispatcher, stores and views components with distinct inputs and outputs as follows:

mapStateToProps()

 _

103. What is Redux?

Redux is a predictable state container for JavaScript apps based on the Flux design pattern. Redux can be used together with React, or with

any other view library. It is tiny (about 2kB) and has no dependencies.

 _

104. What are the core principles of Redux?

Redux follows three fundamental principles:

i. Single source of truth: The state of your whole application is stored in an object tree within a single store. The single state tree makes

it easier to keep track of changes over time and debug or inspect the application.

ii. State is read-only: The only way to change the state is to emit an action, an object describing what happened. This ensures that

neither the views nor the network callbacks will ever write directly to the state.

iii. Changes are made with pure functions: To specify how the state tree is transformed by actions, you write reducers. Reducers are just

pure functions that take the previous state and an action as parameters, and return the next state.

 _

105. What are the downsides of Redux compared to Flux?

Instead of saying downsides we can say that there are few compromises of using Redux over Flux. Those are as follows:

i. You will need to learn to avoid mutations: Flux is un-opinionated about mutating data, but Redux doesn't like mutations and many

packages complementary to Redux assume you never mutate the state. You can enforce this with dev-only packages like

immutable-state-invariant , Immutable.js, or instructing your team to write non-mutating code.

ii. You're going to have to carefully pick your packages: While Flux explicitly doesn't try to solve problems such as undo/redo,

persistence, or forms, Redux has extension points such as middleware and store enhancers, and it has spawned a rich ecosystem.

iii. There is no nice Flow integration yet: Flux currently lets you do very impressive static type checks which Redux doesn't support yet.

 _

106. What is the difference between and mapDispatchToProps() ?

is a utility which helps your component get updated state (which is updated by some other components):

is a utility which will help your component to fire an action event (dispatching action which may cause change of

application state):

https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/flux.png
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/flux.png
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/flux.png
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/flux.png
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/flux.png
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/flux.png
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/flux.png
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/flux.png
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/flux.png
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/flux.png
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/flux.png

It is recommended to always use the ―object shorthand‖ form for the mapDispatchToProps .

Redux wraps it in another function that looks like (…args) => dispatch(onTodoClick(…args)), and pass that wrapper function as a prop to

your component.

 _

107. Can I dispatch an action in reducer?

Dispatching an action within a reducer is an anti-pattern. Your reducer should be without side effects, simply digesting the action payload

and returning a new state object. Adding listeners and dispatching actions within the reducer can lead to chained actions and other side

effects.

 _

108. How to access Redux store outside a component?

You just need to export the store from the module where it created with createStore() . Also, it shouldn't pollute the global window

object.

 _

109. What are the drawbacks of MVW pattern?

i. DOM manipulation is very expensive which causes applications to behave slow and inefficient.

ii. Due to circular dependencies, a complicated model was created around models and views.

iii. Lot of data changes happens for collaborative applications(like Google Docs).

iv. No way to do undo (travel back in time) easily without adding so much extra code.

 _

110. Are there any similarities between Redux and RxJS?

These libraries are very different for very different purposes, but there are some vague similarities.

Redux is a tool for managing state throughout the application. It is usually used as an architecture for UIs. Think of it as an alternative to

(half of) Angular. RxJS is a reactive programming library. It is usually used as a tool to accomplish asynchronous tasks in JavaScript. Think of

it as an alternative to Promises. Redux uses the Reactive paradigm because the Store is reactive. The Store observes actions from a

distance, and changes itself. RxJS also uses the Reactive paradigm, but instead of being an architecture, it gives you basic building blocks,

Observables, to accomplish this pattern.

 _

111. How to reset state in Redux?

You need to write a root reducer in your application which delegate handling the action to the reducer generated by combineReducers() .

For example, let us take to return the initial state after action. As we know, reducers are supposed to return

the initial state when they are called with as the first argument, no matter the action.

redux-persist

redux-thunk

In case of using redux-persist , you may also need to clean your storage. keeps a copy of your state in a storage engine.

First, you need to import the appropriate storage engine and then, to parse the state before setting it to undefined and clean each storage

state key.

 _

112. What is the difference between React context and React Redux?

You can use Context in your application directly and is going to be great for passing down data to deeply nested components which what

it was designed for.

Whereas Redux is much more powerful and provides a large number of features that the Context API doesn't provide. Also, React Redux

uses context internally but it doesn't expose this fact in the public API.

 _

113. Why are Redux state functions called reducers?

Reducers always return the accumulation of the state (based on all previous and current actions). Therefore, they act as a reducer of state.

Each time a Redux reducer is called, the state and action are passed as parameters. This state is then reduced (or accumulated) based on

the action, and then the next state is returned. You could reduce a collection of actions and an initial state (of the store) on which to

perform these actions to get the resulting final state.

 _

114. How to make AJAX request in Redux?

You can use middleware which allows you to define async actions.

Let's take an example of fetching specific account as an AJAX call using fetch API:

 _

115. Should I keep all component's state in Redux store?

Keep your data in the Redux store, and the UI related state internally in the component.

 _

116. What is the proper way to access Redux store?

The best way to access your store in a component is to use the function, that creates a new component that wraps around your

existing one. This pattern is called Higher-Order Components, and is generally the preferred way of extending a component's functionality

in React. This allows you to map state and action creators to your component, and have them passed in automatically as your store

updates.

Let's take an example of component using connect:

Due to it having quite a few performance optimizations and generally being less likely to cause bugs, the Redux developers almost always

recommend using over accessing the store directly (using context API).

 _

117. What is the difference between component and container in React Redux?

Component is a class or function component that describes the presentational part of your application.

Container is an informal term for a component that is connected to a Redux store. Containers subscribe to Redux state updates and

dispatch actions, and they usually don't render DOM elements; they delegate rendering to presentational child components.

 _

118. What is the purpose of the constants in Redux?

Constants allows you to easily find all usages of that specific functionality across the project when you use an IDE. It also prevents you from

introducing silly bugs caused by typos – in which case, you will get a

Normally we will save them in a single file (constants.js or actionTypes.js).

In Redux, you use them in two places:

i. During action creation:

Let's take actions.js :

immediately.

ownProps

ii. In reducers:

Let's create reducer.js :

 _

119. What are the different ways to write mapDispatchToProps() ?

There are a few ways of binding action creators to

Below are the possible options:

The third option is just a shorthand for the first one.

 _

120. What is the use of the parameter in

If the parameter is specified, React Redux will pass the props that were passed to the component into your connect functions.

So, if you use a connected component:

The inside your and functions will be an object:

You can use this object to decide what to return from those functions.

 _

121. How to structure Redux top level directories?

 in mapDispatchToProps() .

mapStateToProps() and mapDispatchToProps() ?

Most of the applications has several top-level directories as below:

i. Components: Used for dumb components unaware of Redux.

ii. Containers: Used for smart components connected to Redux.

iii. Actions: Used for all action creators, where file names correspond to part of the app.

iv. Reducers: Used for all reducers, where files name correspond to state key.

v. Store: Used for store initialization.

This structure works well for small and medium size apps.

 _

122. What is redux-saga?

is a library that aims to make side effects (asynchronous things like data fetching and impure things like accessing the browser

cache) in React/Redux applications easier and better.

It is available in NPM:

 _

123. What is the mental model of redux-saga?

Saga is like a separate thread in your application, that's solely responsible for side effects.

is a redux middleware, which means

this thread can be started, paused and cancelled from the main application with normal Redux actions, it has access to the full Redux

application state and it can dispatch Redux actions as well.

 _

124. What are the differences between and in redux-saga?

Both and put() are effect creator functions. function is used to create effect description, which instructs middleware to

call the promise. put() function creates an effect, which instructs middleware to dispatch an action to the store.

Let's take example of how these effects work for fetching particular user data.

 _

125. What is Redux Thunk?

Redux Thunk middleware allows you to write action creators that return a function instead of an action. The thunk can be used to delay the

dispatch of an action, or to dispatch only if a certain condition is met. The inner function receives the store methods

as parameters.

and

 _

126. What are the differences between

Both Redux Thunk and Redux Saga take care of dealing with side effects. In most of the scenarios, Thunk uses Promises to deal with them,

whereas Saga uses Generators. Thunk is simple to use and Promises are familiar to many developers, Sagas/Generators are more powerful

but you will need to learn them. But both middleware can coexist, so you can start with Thunks and introduce Sagas when/if you need

them.

 _

redux-saga

redux-saga

call() put()

redux-saga and redux-thunk ?

127. What is Redux DevTools?

Redux DevTools is a live-editing time travel environment for Redux with hot reloading, action replay, and customizable UI. If you don't want

to bother with installing Redux DevTools and integrating it into your project, consider using Redux DevTools Extension for Chrome and

Firefox.

 _

128. What are the features of Redux DevTools?

Some of the main features of Redux DevTools are below,

i. Lets you inspect every state and action payload.

ii. Lets you go back in time by cancelling actions.

iii. If you change the reducer code, each staged action will be re-evaluated.

iv. If the reducers throw, you will see during which action this happened, and what the error was.

v. With

 _

store enhancer, you can persist debug sessions across page reloads.

129. What are Redux selectors and why use them?

Selectors are functions that take Redux state as an argument and return some data to pass to the component.

For example, to get user details from the state:

These selectors have two main benefits,

i. The selector can compute derived data, allowing Redux to store the minimal possible state

ii. The selector is not recomputed unless one of its arguments changes

 _

130. What is Redux Form?

Redux Form works with React and Redux to enable a form in React to use Redux to store all of its state. Redux Form can be used with raw

HTML5 inputs, but it also works very well with common UI frameworks like Material UI, React Widgets and React Bootstrap.

 _

131. What are the main features of Redux Form?

Some of the main features of Redux Form are:

i. Field values persistence via Redux store.

ii. Validation (sync/async) and submission.

iii. Formatting, parsing and normalization of field values.

 _

132. How to add multiple middlewares to Redux?

You can use applyMiddleware() .

For example, you can add and passing them as arguments to applyMiddleware() :

 _

133. How to set initial state in Redux?

You need to pass initial state as second argument to createStore:

redux-thunk

 _

134. How Relay is different from Redux?

Relay is similar to Redux in that they both use a single store. The main difference is that relay only manages state originated from the

server, and all access to the state is used via GraphQL queries (for reading data) and mutations (for changing data). Relay caches the data

for you and optimizes data fetching for you, by fetching only changed data and nothing more.

135. What is an action in Redux?

Actions are plain JavaScript objects or payloads of information that send data from your application to your store. They are the only source

of information for the store. Actions must have a type property that indicates the type of action being performed.

For example, let's take an action which represents adding a new todo item:

 _

React Native

 _

136. What is the difference between React Native and React?

React is a JavaScript library, supporting both front end web and being run on the server, for building user interfaces and web applications.

React Native is a mobile framework that compiles to native app components, allowing you to build native mobile applications (iOS,

Android, and Windows) in JavaScript that allows you to use React to build your components, and implements React under the hood.

 _

137. How to test React Native apps?

React Native can be tested only in mobile simulators like iOS and Android. You can run the app in your mobile using expo app

(https://expo.io) Where it syncs using QR code, your mobile and computer should be in same wireless network.

 _

138. How to do logging in React Native?

You can use console.log , console.warn , etc. As of React Native v0.29 you can simply run the following to see logs in the console:

 _

139. How to debug your React Native?

Follow the below steps to debug React Native app:

i. Run your application in the iOS simulator.

ii. Press and a webpage should open up at http://localhost:8081/debugger-ui .

https://expo.io/

iii. Enable Pause On Caught Exceptions for a better debugging experience.

iv. Press to open the Chrome Developer tools, or open it via ->

v. You should now be able to debug as you normally would.

React supported libraries & Integration

 _

140. What is reselect and how it works?

Reselect is a selector library (for Redux) which uses memoization concept. It was originally written to compute derived data from Redux-like

applications state, but it can't be tied to any architecture or library.

Reselect keeps a copy of the last inputs/outputs of the last call, and recomputes the result only if one of the inputs changes. If the same

inputs are provided twice in a row, Reselect returns the cached output. It's memoization and cache are fully customizable.

 _

141. What is Flow?

Flow is a static type checker designed to find type errors in JavaScript. Flow types can express much more fine-grained distinctions than

traditional type systems. For example, Flow helps you catch errors involving null , unlike most type systems.

 _

142. What is the difference between Flow and PropTypes?

Flow is a static analysis tool (static checker) which uses a superset of the language, allowing you to add type annotations to all of your code

and catch an entire class of bugs at compile time.

PropTypes is a basic type checker (runtime checker) which has been patched onto React. It can't check anything other than the types of the

props being passed to a given component. If you want more flexible typechecking for your entire project Flow/TypeScript are appropriate

choices.

 _

143. How to use Font Awesome icons in React?

The below steps followed to include Font Awesome in React:

i. Install font-awesome :

ii. Import in your file:

iii. Add Font Awesome classes in className :

 _

144. What is React Dev Tools?

React Developer Tools let you inspect the component hierarchy, including component props and state. It exists both as a browser extension

(for Chrome and Firefox), and as a standalone app (works with other environments including Safari, IE, and React Native).

The official extensions available for different browsers or environments.

i. Chrome extension

ii. Firefox extension

iii. Standalone app (Safari, React Native, etc)

import "font-awesome/css/font-awesome.min.css";

 -> Developer Tools .

font-awesome

 _

145. Why is DevTools not loading in Chrome for local files?

If you opened a local HTML file in your browser (file://...) then you must first open Chrome Extensions and check

 _

146. How to use Polymer in React?

You need to follow below steps to use Polymer in React,

i. Create a Polymer element:

ii. Create the Polymer component HTML tag by importing it in a HTML document, e.g. import it in the

application:

iii. Use that element in the JSX file:

of your React

 _

147. What are the advantages of React over Vue.js?

React has the following advantages over Vue.js:

i. Gives more flexibility in large apps developing.

ii. Easier to test.

iii. Suitable for mobile apps creating.

iv. More information and solutions available.

Note: The above list of advantages are purely opinionated and it vary based on the professional experience. But they are helpful as base

parameters.

 _

148. What is the difference between React and Angular?

Let's see the difference between React and Angular in a table format.

React Angular

React is a library and has only the View layer Angular is a framework and has complete MVC functionality

React handles rendering on the server side
AngularJS renders only on the client side but Angular 2 and above renders

on the server side

React uses JSX that looks like HTML in JS which can be

confusing

Angular follows the template approach for HTML, which makes code shorter

and easy to understand

React Angular

React Native, which is a React type to build mobile

applications are faster and more stable
Ionic, Angular's mobile native app is relatively less stable and slower

In React, data flows only in one way and hence

debugging is easy

In Angular, data flows both way i.e it has two-way data binding between

children and parent and hence debugging is often difficult

Note: The above list of differences are purely opinionated and it vary based on the professional experience. But they are helpful as base

parameters.

 _

149. Why React tab is not showing up in DevTools?

When the page loads, React DevTools sets a global named , then React communicates with that hook

during initialization. If the website is not using React or if React fails to communicate with DevTools then it won't show up the tab.

 _

150. What are Styled Components?

is a JavaScript library for styling React applications. It removes the mapping between styles and components, and lets

you write actual CSS augmented with JavaScript.

 _

151. Give an example of Styled Components?

Lets create and components with specific styles for each.

These two variables, and Wrapper , are now components that you can render just like any other react component.

 _

152. What is Relay?

Relay is a JavaScript framework for providing a data layer and client-server communication to web applications using the React view layer.

 _

Miscellaneous

153. What are the main features of Reselect library?

Let's see the main features of Reselect library,

i. Selectors can compute derived data, allowing Redux to store the minimal possible state.

ii. Selectors are efficient. A selector is not recomputed unless one of its arguments changes.

iii. Selectors are composable. They can be used as input to other selectors.

styled-components

154. Give an example of Reselect usage?

Let's take calculations and different amounts of a shipment order with the simplified usage of Reselect:

 _

155. Can Redux only be used with React?

Redux can be used as a data store for any UI layer. The most common usage is with React and React Native, but there are bindings

available for Angular, Angular 2, Vue, Mithril, and more. Redux simply provides a subscription mechanism which can be used by any other

code.

 _

156. Do you need to have a particular build tool to use Redux?

Redux is originally written in ES6 and transpiled for production into ES5 with Webpack and Babel. You should be able to use it regardless of

your JavaScript build process. Redux also offers a UMD build that can be used directly without any build process at all.

 _

157. How Redux Form

You need to add

get updated from state?

setting.

If your

 _

prop gets updated, your form will update too.

158. How React PropTypes allow different types for one prop?

You can use method of PropTypes .

initialValues

For example, the height property can be defined with either or type as below:

 _

159. Can I import an SVG file as react component?

You can import SVG directly as component instead of loading it as a file. This feature is available with

and higher.

Note: Don't forget about the curly braces in the import.

 _

160. What is render hijacking in react?

The concept of render hijacking is the ability to control what a component will output from another component. It means that you

decorate your component by wrapping it into a Higher-Order component. By wrapping, you can inject additional props or make other

changes, which can cause changing logic of rendering. It does not actually enable hijacking, but by using HOC you make your component

behave differently.

 _

161. How to pass numbers to React component?

We can pass as to React component using curly braces where as in double quotes or single quotes

 _

162. Do I need to keep all my state into Redux? Should I ever use react internal state?

It is up to the developer's decision, i.e., it is developer's job to determine what kinds of state make up your application, and where each

piece of state should live. Some users prefer to keep every single piece of data in Redux, to maintain a fully serializable and controlled

version of their application at all times. Others prefer to keep non-critical or UI state, such as ―is this dropdown currently open‖, inside a

component's internal state.

Below are the rules of thumb to determine what kind of data should be put into Redux

i. Do other parts of the application care about this data?

ii. Do you need to be able to create further derived data based on this original data?

iii. Is the same data being used to drive multiple components?

iv. Is there value to you in being able to restore this state to a given point in time (ie, time travel debugging)?

react-scripts@2.0.0

mailto:react-scripts@2.0.0

v. Do you want to cache the data (i.e, use what's in state if it's already there instead of re-requesting it)?

 _

163. What is the purpose of registerServiceWorker in React?

React creates a service worker for you without any configuration by default. The service worker is a web API that helps you cache your

assets and other files so that when the user is offline or on a slow network, he/she can still see results on the screen, as such, it helps you

build a better user experience, that's what you should know about service worker for now. It's all about adding offline capabilities to your

site.

 _

164. What is React memo function?

Class components can be restricted from re-rendering when their input props are the same using PureComponent or

shouldComponentUpdate. Now you can do the same with function components by wrapping them in React.memo.

 _

165. What is React lazy function?

function lets you render a dynamic import as a regular component. It will automatically load the bundle containing the

when the component gets rendered. This must return a Promise which resolves to a module with a default export

containing a React component.

Note: and is not yet available for server-side rendering. If you want to do code-splitting in a server rendered app,

we still recommend React Loadable.

 _

166. How to prevent unnecessary updates using setState?

You can compare the current value of the state with an existing state value and decide whether to rerender the page or not. If the values

are the same then you need to return null to stop re-rendering otherwise return the latest state value.

For example, the user profile information is conditionally rendered as follows,

 _

167. How do you render Array, Strings and Numbers in React 16 Version?

Arrays: Unlike older releases, you don't need to make sure render method return a single element in React16. You are able to return

multiple sibling elements without a wrapping element by returning an array.

For example, let us take the below list of developers,

You can also merge this array of items in another array component.

Strings and Numbers: You can also return string and number type from the render method.

 _

168. What are hooks?

Hooks is a special JavaScript function that allows you use state and other React features without writing a class. This pattern has been

introduced as a new feature in React 16.8 and helped to isolate the stateful logic from the components.

Let's see an example of useState hook:

Note: Hooks can be used inside an existing function component without rewriting the component.

 _

eslint-config-react-app

169. What rules need to be followed for hooks?

You need to follow two rules in order to use hooks,

i. Call Hooks only at the top level of your react functions: You should always use hooks at the top level of react function before any

early returns. i.e, You shouldn’t call Hooks inside loops, conditions, or nested functions. This will ensure that Hooks are called in the

same order each time a component renders and it preserves the state of Hooks between multiple re-renders due to useState and

useEffect calls.

ii. Call Hooks from React Functions only: You shouldn’t call Hooks from regular JavaScript functions or class components. Instead, you

should call them from either function components or custom hooks.

 _

170. How to ensure hooks followed the rules in your project?

React team released an ESLint plugin called eslint-plugin-react-hooks that enforces Hook's two rules. It is part of Hooks API. You can add

this plugin to your project using the below command,

And apply the below config in your ESLint config file,

The recommended preset already includes the hooks rules of this plugin. For example, the linter enforce proper

naming convention for hooks. If you rename your custom hooks which as prefix "use" to something else then linter won't allow you to call

built-in hooks such as useState, useEffect etc inside of your custom hook anymore.

Note: This plugin is intended to use in Create React App by default.

 _

171. What are the differences between Flux and Redux?

Below are the major differences between Flux and Redux

Flux Redux

State is mutable State is immutable

The Store contains both state and change logic The Store and change logic are separate

There are multiple stores exist There is only one store exist

All the stores are disconnected and flat Single store with hierarchical reducers

It has a singleton dispatcher There is no concept of dispatcher

React components subscribe to the store Container components uses connect function

 _

172. What are the benefits of React Router V4?

Below are the main benefits of React Router V4 module,

i. In React Router v4(version 4), the API is completely about components. A router can be visualized as a single

component(<BrowserRouter>) which wraps specific child router components(<Route>).

ii. You don't need to manually set history. The router module will take care history by wrapping routes with

component.

iii. The application size is reduced by adding only the specific router module(Web, core, or native)

 _

173. Can you describe about componentDidCatch lifecycle method signature?

The componentDidCatch lifecycle method is invoked after an error has been thrown by a descendant component. The method receives

two parameters,

i. error: - The error object which was thrown

ii. info: - An object with a componentStack key contains the information about which component threw the error.

The method structure would be as follows

 _

174. In which scenarios do error boundaries not catch errors?

Below are the cases in which error boundaries don't work,

i. Inside Event handlers

ii. Asynchronous code using setTimeout or requestAnimationFrame callbacks

iii. During Server side rendering

iv. When errors thrown in the error boundary code itself

 _

175. What is the behavior of uncaught errors in react 16?

In React 16, errors that were not caught by any error boundary will result in unmounting of the whole React component tree. The reason

behind this decision is that it is worse to leave corrupted UI in place than to completely remove it. For example, it is worse for a payments

app to display a wrong amount than to render nothing.

 _

176. What is the proper placement for error boundaries?

The granularity of error boundaries usage is up to the developer based on project needs. You can follow either of these approaches,

i. You can wrap top-level route components to display a generic error message for the entire application.

ii. You can also wrap individual components in an error boundary to protect them from crashing the rest of the application.

 _

177. What is the benefit of component stack trace from error boundary?

Apart from error messages and javascript stack, React16 will display the component stack trace with file names and line numbers using

error boundary concept.

For example, BuggyCounter component displays the component stack trace as below,

 _

178. What are default props?

The defaultProps can be defined as a property on the component to set the default values for the props. These default props are used

when props not supplied(i.e., undefined props), but not for null props. That means, If you provide null value then it remains null value.

For example, let us create color default prop for the button component,

https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/error_boundary.png
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/error_boundary.png
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/error_boundary.png
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/error_boundary.png
https://github.com/sudheerj/reactjs-interview-questions/blob/master/images/error_boundary.png

If

value

is not provided then it will set the default value to 'red'. i.e, Whenever you try to access the color prop it uses the default

 _

179. What is the purpose of displayName class property?

The displayName string is used in debugging messages. Usually, you don’t need to set it explicitly because it’s inferred from the name of

the function or class that defines the component. You might want to set it explicitly if you want to display a different name for debugging

purposes or when you create a higher-order component.

For example, To ease debugging, choose a display name that communicates that it’s the result of a withSubscription HOC.

 _

180. What is the browser support for react applications?

React supports all popular browsers, including Internet Explorer 9 and above, although some polyfills are required for older browsers such

as IE 9 and IE 10. If you use es5-shim and es5-sham polyfill then it even support old browsers that doesn't support ES5 methods.

 _

181. What is code-splitting?

Code-Splitting is a feature supported by bundlers like Webpack and Browserify which can create multiple bundles that can be dynamically

loaded at runtime. The react project supports code splitting via dynamic import() feature.

For example, in the below code snippets, it will make moduleA.js and all its unique dependencies as a separate chunk that only loads after

the user clicks the 'Load' button. moduleA.js

App.js

 _

182. What are Keyed Fragments?

The Fragments declared with the explicit <React.Fragment> syntax may have keys. The general use case is mapping a collection to an array

of fragments as below,

Note: key is the only attribute that can be passed to Fragment. In the future, there might be a support for additional attributes, such as

event handlers.

 _

183. Does React support all HTML attributes?

As of React 16, both standard or custom DOM attributes are fully supported. Since React components often take both custom and DOM-

related props, React uses the camelCase convention just like the DOM APIs.

Let us take few props with respect to standard HTML attributes,

These props work similarly to the corresponding HTML attributes, with the exception of the special cases. It also support all SVG attributes.

 _

184. When component props defaults to true?

If you pass no value for a prop, it defaults to true. This behavior is available so that it matches the behavior of HTML.

For example, below expressions are equivalent,

Note: It is not recommended to use this approach because it can be confused with the ES6 object shorthand (example,

short for {name: name})

 _

185. What is NextJS and major features of it?

which is

Next.js is a popular and lightweight framework for static and server‑rendered applications built with React. It also provides styling and

routing solutions. Below are the major features provided by NextJS,

i. Server-rendered by default

ii. Automatic code splitting for faster page loads

iii. Simple client-side routing (page based)

iv. Webpack-based dev environment which supports (HMR)

v. Able to implement with Express or any other Node.js HTTP server

vi. Customizable with your own Babel and Webpack configurations

 _

186. How do you pass an event handler to a component?

You can pass event handlers and other functions as props to child components. The functions can be passed to child component as below,

 _

187. How to prevent a function from being called multiple times?

If you use an event handler such as onClick or onScroll and want to prevent the callback from being fired too quickly, then you can limit

the rate at which callback is executed. This can be achieved in the below possible ways,

i. Throttling: Changes based on a time based frequency. For example, it can be used using .throttle lodash function

ii. Debouncing: Publish changes after a period of inactivity. For example, it can be used using .debounce lodash function

iii. RequestAnimationFrame throttling: Changes based on requestAnimationFrame. For example, it can be used using raf-schd lodash

function

 _

188. How JSX prevents Injection Attacks?

React DOM escapes any values embedded in JSX before rendering them. Thus it ensures that you can never inject anything that’s not

explicitly written in your application. Everything is converted to a string before being rendered.

For example, you can embed user input as below,

This way you can prevent XSS(Cross-site-scripting) attacks in the application.

 _

189. How do you update rendered elements?

You can update UI(represented by rendered element) by passing the newly created element to ReactDOM's render method.

For example, lets take a ticking clock example, where it updates the time by calling render method multiple times,

 _

190. How do you say that props are readonly?

When you declare a component as a function or a class, it must never modify its own props.

Let us take a below capital function,

The above function is called ―pure‖ because it does not attempt to change their inputs, and always return the same result for the same

inputs. Hence, React has a single rule saying "All React components must act like pure functions with respect to their props."

 _

191. What are the conditions to safely use the index as a key?

There are three conditions to make sure, it is safe use the index as a key.

i. The list and items are static– they are not computed and do not change

ii. The items in the list have no ids

iii. The list is never reordered or filtered.

 _

192. Should keys be globally unique?

The keys used within arrays should be unique among their siblings but they don’t need to be globally unique. i.e, You can use the same

keys with two different arrays.

For example, the below component uses two arrays with different arrays,

 _

193. What is the popular choice for form handling?

is a form library for react which provides solutions such as validation, keeping track of the visited fields, and handling form

submission.

In detail, You can categorize them as follows,

i. Getting values in and out of form state

ii. Validation and error messages

iii. Handling form submission

It is used to create a scalable, performant, form helper with a minimal API to solve annoying stuff.

 _

194. What are the advantages of formik over redux form library?

Below are the main reasons to recommend formik over redux form library,

i. The form state is inherently short-term and local, so tracking it in Redux (or any kind of Flux library) is unnecessary.

ii. Redux-Form calls your entire top-level Redux reducer multiple times ON EVERY SINGLE KEYSTROKE. This way it increases input latency

for large apps.

iii. Redux-Form is 22.5 kB minified gzipped whereas Formik is 12.7 kB

 _

195. Why are you not required to use inheritance?

In React, it is recommended to use composition over inheritance to reuse code between components. Both Props and composition give

you all the flexibility you need to customize a component’s look and behavior explicitly and safely. Whereas, If you want to reuse non-UI

functionality between components, it is suggested to extract it into a separate JavaScript module. Later components import it and use that

function, object, or class, without extending it.

 _

196. Can I use web components in react application?

Yes, you can use web components in a react application. Even though many developers won't use this combination, it may require

especially if you are using third-party UI components that are written using Web Components.

For example, let us use date picker web component as below,

 _

197. What is dynamic import?

You can achieve code-splitting in your app using dynamic import.

Let's take an example of addition,

i. Normal Import

ii. Dynamic Import

 _

198. What are loadable components?

With the release of React 18, React.lazy and Suspense are now available for server-side rendering. However, prior to React 18, it was

recommended to use Loadable Components for code-splitting in a server-side rendered app because React.lazy and Suspense were not

available for server-side rendering. Loadable Components lets you render a dynamic import as a regular component. For example, you can

use Loadable Components to load the OtherComponent in a separate bundle like this:

Now OtherComponent will be loaded in a separated bundle Loadable Components provides additional benefits beyond just code-splitting,

such as automatic code reloading, error handling, and preloading. By using Loadable Components, you can ensure that your application

loads quickly and efficiently, providing a better user experience for your users.

 _

199. What is suspense component?

If the module containing the dynamic import is not yet loaded by the time parent component renders, you must show some fallback

content while you’re waiting for it to load using a loading indicator. This can be done using Suspense component.

For example, the below code uses suspense component,

As mentioned in the above code, Suspense is wrapped above the lazy component.

 _

200. What is route based code splitting?

One of the best place to do code splitting is with routes. The entire page is going to re-render at once so users are unlikely to interact with

other elements in the page at the same time. Due to this, the user experience won't be disturbed.

Let us take an example of route based website using libraries like React Router with React.lazy,

In the above code, the code splitting will happen at each route level.

 _

201. What is the purpose of default value in context?

The defaultValue argument is only used when a component does not have a matching Provider above it in the tree. This can be helpful for

testing components in isolation without wrapping them.

Below code snippet provides default theme value as Luna.

 _

202. What is diffing algorithm?

React needs to use algorithms to find out how to efficiently update the UI to match the most recent tree. The diffing algorithms is

generating the minimum number of operations to transform one tree into another. However, the algorithms have a complexity in the order

of O(n³) where n is the number of elements in the tree.

In this case, displaying 1000 elements would require in the order of one billion comparisons. This is far too expensive. Instead, React

implements a heuristic O(n) algorithm based on two assumptions:

i. Two elements of different types will produce different trees.

ii. The developer can hint at which child elements may be stable across different renders with a key prop.

 _

203. What are the rules covered by diffing algorithm?

When diffing two trees, React first compares the two root elements. The behavior is different depending on the types of the root elements.

It covers the below rules during reconciliation algorithm,

i. Elements Of Different Types: Whenever the root elements have different types, React will tear down the old tree and build the new

tree from scratch. For example, elements to , or from

to of different types lead a full rebuild.

ii. DOM Elements Of The Same Type: When comparing two React DOM elements of the same type, React looks at the attributes of both,

keeps the same underlying DOM node, and only updates the changed attributes. Lets take an example with same DOM elements

except className attribute,

iii. Component Elements Of The Same Type: When a component updates, the instance stays the same, so that state is maintained across

renders. React updates the props of the underlying component instance to match the new element, and calls

componentWillReceiveProps() and componentWillUpdate() on the underlying instance. After that, the render() method is called and

the diff algorithm recurses on the previous result and the new result.

iv. Recursing On Children: when recursing on the children of a DOM node, React just iterates over both lists of children at the same time

and generates a mutation whenever there’s a difference. For example, when adding an element at the end of the children, converting

between these two trees works well.

v. Handling keys: React supports a key attribute. When children have keys, React uses the key to match children in the original tree with

children in the subsequent tree. For example, adding a key can make the tree conversion efficient,

 _

204. When do you need to use refs?

There are few use cases to go for refs,

i. Managing focus, text selection, or media playback.

ii. Triggering imperative animations.

iii. Integrating with third-party DOM libraries.

 _

205. Must prop be named as render for render props?

Even though the pattern named render props, you don’t have to use a prop named render to use this pattern. i.e, Any prop that is a

function that a component uses to know what to render is technically a ―render prop‖. Lets take an example with the children prop for

render props,

Actually children prop doesn’t need to be named in the list of ―attributes‖ in JSX element. Instead, you can keep it directly inside element,

While using this above technique(without any name), explicitly state that children should be a function in your propTypes.

 _

206. What are the problems of using render props with pure components?

If you create a function inside a render method, it negates the purpose of pure component. Because the shallow prop comparison will

always return false for new props, and each render in this case will generate a new value for the render prop. You can solve this issue by

defining the render function as instance method.

 _

207. What is windowing technique?

Windowing is a technique that only renders a small subset of your rows at any given time, and can dramatically reduce the time it takes to

re-render the components as well as the number of DOM nodes created. If your application renders long lists of data then this technique is

recommended. Both react-window and react-virtualized are popular windowing libraries which provides several reusable components for

displaying lists, grids, and tabular data.

 _

208. How do you print falsy values in JSX?

The falsy values such as false, null, undefined, and true are valid children but they don't render anything. If you still want to display them

then you need to convert it to string. Let's take an example on how to convert to a string,

 _

209. What is the typical use case of portals?

React portals are very useful when a parent component has overflow: hidden or has properties that affect the stacking context (e.g. z-index,

position, opacity) and you need to visually ―break out‖ of its container.

For example, dialogs, global message notifications, hovercards, and tooltips.

 _

210. How do you set default value for uncontrolled component?

In React, the value attribute on form elements will override the value in the DOM. With an uncontrolled component, you might want React

to specify the initial value, but leave subsequent updates uncontrolled. To handle this case, you can specify a defaultValue attribute instead

of value.

The same applies for

 _

and inputs. But you need to use defaultChecked for and inputs.

211. What is your favorite React stack?

Even though the tech stack varies from developer to developer, the most popular stack is used in react boilerplate project code. It mainly

uses Redux and redux-saga for state management and asynchronous side-effects, react-router for routing purpose, styled-components for

styling react components, axios for invoking REST api, and other supported stack such as webpack, reselect, ESNext, Babel. You can clone

the project https://github.com/react-boilerplate/react-boilerplate and start working on any new react project.

 _

212. What is the difference between Real DOM and Virtual DOM?

Below are the main differences between Real DOM and Virtual DOM,

Real DOM Virtual DOM

Updates are slow Updates are fast

DOM manipulation is very expensive. DOM manipulation is very easy

You can update HTML directly. You Can’t directly update HTML

It causes too much of memory wastage There is no memory wastage

Creates a new DOM if element updates It updates the JSX if element update

 _

213. How to add Bootstrap to a react application?

Bootstrap can be added to your React app in a three possible ways,

i. Using the Bootstrap CDN: This is the easiest way to add bootstrap. Add both bootstrap CSS and JS resources in a head tag.

ii. Bootstrap as Dependency: If you are using a build tool or a module bundler such as Webpack, then this is the preferred option for

adding Bootstrap to your React application

iii. React Bootstrap Package: In this case, you can add Bootstrap to our React app is by using a package that has rebuilt Bootstrap

components to work particularly as React components. Below packages are popular in this category,

a. react-bootstrap

b. reactstrap

 _

214. Can you list down top websites or applications using react as front end framework?

Below are the

i. Facebook

ii. Uber

iii. Instagram

iv. WhatsApp

v. Khan Academy

vi. Airbnb

vii. Dropbox

viii. Flipboard

ix. Netflix

x. PayPal

 _

using React as their front-end framework,

215. Is it recommended to use CSS In JS technique in React?

React does not have any opinion about how styles are defined but if you are a beginner then good starting point is to define your styles in

a separate *.css file as usual and refer to them using className. This functionality is not part of React but came from third-party libraries.

But If you want to try a different approach(CSS-In-JS) then styled-components library is a good option.

 _

216. Do I need to rewrite all my class components with hooks?

https://github.com/react-boilerplate/react-boilerplate

No. But you can try Hooks in a few components(or new components) without rewriting any existing code. Because there are no plans to

remove classes in ReactJS.

 _

217. How to fetch data with React Hooks?

The effect hook called

useState hook’s update function.

can be used to fetch data from an API and to set the data in the local state of the component with the

Here is an example of fetching a list of react articles from an API using fetch.

A popular way to simplify this is by using the library axios.

We provided an empty array as second argument to the useEffect hook to avoid activating it on component updates. This way, it only

fetches on component mount.

 _

218. Is Hooks cover all use cases for classes?

Hooks doesn't cover all use cases of classes but there is a plan to add them soon. Currently there are no Hook equivalents to the

uncommon getSnapshotBeforeUpdate and componentDidCatch lifecycles yet.

 _

219. What is the stable release for hooks support?

React includes a stable implementation of React Hooks in 16.8 release for below packages

i. React DOM

ii. React DOM Server

iii. React Test Renderer

iv. React Shallow Renderer

 _

220. Why do we use array destructuring (square brackets notation) in useState ?

When we declare a state variable with useState , it returns a pair — an array with two items. The first item is the current value, and the

second is a function that updates the value. Using [0] and [1] to access them is a bit confusing because they have a specific meaning. This

is why we use array destructuring instead.

For example, the array index access would look as follows:

http://hn.algolia.com/api/v1/search?query=react

Saga .

Whereas with array destructuring the variables can be accessed as follows:

 _

221. What are the sources used for introducing hooks?

Hooks got the ideas from several different sources. Below are some of them,

i. Previous experiments with functional APIs in the react-future repository

ii. Community experiments with render prop APIs such as Reactions Component

iii. State variables and state cells in DisplayScript.

iv. Subscriptions in Rx.

v. Reducer components in ReasonReact.

 _

222. How do you access imperative API of web components?

Web Components often expose an imperative API to implement its functions. You will need to use a ref to interact with the DOM node

directly if you want to access imperative API of a web component. But if you are using third-party Web Components, the best solution is to

write a React component that behaves as a wrapper for your Web Component.

 _

223. What is formik?

Formik is a small react form library that helps you with the three major problems,

i. Getting values in and out of form state

ii. Validation and error messages

iii. Handling form submission

 _

224. What are typical middleware choices for handling asynchronous calls in Redux?

Some of the popular middleware choices for handling asynchronous calls in Redux eco system are

 _

225. Do browsers understand JSX code?

No, browsers can't understand JSX code. You need a transpiler to convert your JSX to regular Javascript that browsers can understand. The

most widely used transpiler right now is Babel.

 _

226. Describe about data flow in react?

React implements one-way reactive data flow using props which reduce boilerplate and is easier to understand than traditional two-way

data binding.

 _

227. What is MobX?

MobX is a simple, scalable and battle tested state management solution for applying functional reactive programming (TFRP). For ReactJS

application, you need to install below packages,

 _

228. What are the differences between Redux and MobX?

Below are the main differences between Redux and MobX,

Topic Redux MobX

Definition
It is a javascript library for managing the application

state

It is a library for reactively managing the state of your

applications

Programming It is mainly written in ES6 It is written in JavaScript(ES5)

Data Store There is only one large store exist for data storage There is more than one store for storage

Usage Mainly used for large and complex applications Used for simple applications

Performance Need to be improved Provides better performance

How it stores Uses JS Object to store Uses observable to store the data

 _

229. Should I learn ES6 before learning ReactJS?

No, you don’t have to learn es2015/es6 to learn react. But you may find many resources or React ecosystem uses ES6 extensively. Let's see

some of the frequently used ES6 features,

i. Destructuring: To get props and use them in a component

ii. Spread operator: Helps in passing props down into a component

iii. Arrow functions: Makes compact syntax

 _

230. What is Concurrent Rendering?

The Concurrent rendering makes React apps to be more responsive by rendering component trees without blocking the main UI thread. It

allows React to interrupt a long-running render to handle a high-priority event. i.e, When you enabled concurrent Mode, React will keep an

eye on other tasks that need to be done, and if there's something with a higher priority it will pause what it is currently rendering and let

the other task finish first. You can enable this in two ways,

 _

231. What is the difference between async mode and concurrent mode?

Both refers the same thing. Previously concurrent Mode being referred to as "Async Mode" by React team. The name has been changed to

highlight React’s ability to perform work on different priority levels. So it avoids the confusion from other approaches to Async Rendering.

 _

232. Can I use javascript urls in react16.9?

Yes, you can use javascript: URLs but it will log a warning in the console. Because URLs starting with javascript: are dangerous by including

unsanitized output in a tag like and create a security hole.

Remember that the future versions will throw an error for javascript URLs.

 _

233. What is the purpose of eslint plugin for hooks?

The ESLint plugin enforces rules of Hooks to avoid bugs. It assumes that any function starting with ‖use‖ and a capital letter right after it is

a Hook. In particular, the rule enforces that,

i. Calls to Hooks are either inside a PascalCase function (assumed to be a component) or another useSomething function (assumed to

be a custom Hook).

ii. Hooks are called in the same order on every render.

 _

234. What is the difference between Imperative and Declarative in React?

Imagine a simple UI component, such as a "Like" button. When you tap it, it turns blue if it was previously grey, and grey if it was

previously blue.

The imperative way of doing this would be:

Basically, you have to check what is currently on the screen and handle all the changes necessary to redraw it with the current state,

including undoing the changes from the previous state. You can imagine how complex this could be in a real-world scenario.

In contrast, the declarative approach would be:

Because the declarative approach separates concerns, this part of it only needs to handle how the UI should look in a sepecific state, and is

therefore much simpler to understand.

 _

235. What are the benefits of using TypeScript with ReactJS?

Below are some of the benefits of using TypeScript with ReactJS,

i. It is possible to use latest JavaScript features

ii. Use of interfaces for complex type definitions

iii. IDEs such as VS Code was made for TypeScript

iv. Avoid bugs with the ease of readability and Validation

 _

236. How do you make sure that user remains authenticated on page refresh while using Context API State

Management?

When a user logs in and reload, to persist the state generally we add the load user action in the useEffect hooks in the main App.js. While

using Redux, loadUser action can be easily accessed.

App.js

 But while using Context API, to access context in App.js, wrap the AuthState in index.js so that App.js can access the auth context.

Now whenever the page reloads, no matter what route you are on, the user will be authenticated as loadUser action will be triggered

on each re-render.

index.js

App.js

loadUser

 _

237. What are the benefits of new JSX transform?

There are three major benefits of new JSX transform,

i. It is possible to use JSX without importing React packages

ii. The compiled output might improve the bundle size in a small amount

iii. The future improvements provides the flexibility to reduce the number of concepts to learn React.

 _

238. How is the new JSX transform different from old transform??

The new JSX transform doesn’t require React to be in scope. i.e, You don't need to import React package for simple scenarios.

Let's take an example to look at the main differences between the old and the new transform,

Old Transform:

Now JSX transform convert the above code into regular JavaScript as below,

New Transform:

The new JSX transform doesn't require any React imports

Under the hood JSX transform compiles to below code

Note: You still need to import React to use Hooks.

 _

239. What are React Server components?

React Server Component is a way to write React component that gets rendered in the server-side with the purpose of improving React app

performance. These components allow us to load components from the backend.

Note: React Server Components is still under development and not recommended for production yet.

 _

240. What is prop drilling?

Prop Drilling is the process by which you pass data from one component of the React Component tree to another by going through other

components that do not need the data but only help in passing it around.

 _

241. What is the difference between useState and useRef hook?

i. useState causes components to re-render after state updates whereas useRef doesn’t cause a component to re-render when the value

or state changes. Essentially, useRef is like a ―box‖ that can hold a mutable value in its (.current) property.

ii. useState allows us to update the state inside components. While useRef allows referencing DOM elements.

 _

242. What is a wrapper component?

A wrapper in React is a component that wraps or surrounds another component or group of components. It can be used for a variety of

purposes such as adding additional functionality, styling, or layout to the wrapped components.

For example, consider a simple component that displays a message:

We can create a wrapper component that will add a border to the message component:

Now we can use the MessageWrapper component instead of the Message component and the message will be displayed with a border:

Wrapper component can also accept its own props and pass them down to the wrapped component, for example, we can create a wrapper

component that will add a title to the message component:

Now we can use the MessageWrapperWithTitle component and pass title props:

This way, the wrapper component can add additional functionality, styling, or layout to the wrapped component while keeping the

wrapped component simple and reusable.

 _

243. What are the differences between useEffect and useLayoutEffect hooks?

useEffect and useLayoutEffect are both React hooks that can be used to synchronize a component with an external system, such as a

browser API or a third-party library. However, there are some key differences between the two:

 Timing: useEffect runs after the browser has finished painting, while useLayoutEffect runs synchronously before the browser paints.

This means that useLayoutEffect can be used to measure and update layout in a way that feels more synchronous to the user.

 Browser Paint: useEffect allows browser to paint the changes before running the effect, hence it may cause some visual flicker.

useLayoutEffect synchronously runs the effect before browser paints and hence it will avoid visual flicker.

 Execution Order: The order in which multiple useEffect hooks are executed is determined by React and may not be predictable.

However, the order in which multiple useLayoutEffect hooks are executed is determined by the order in which they were called.

 Error handling: useEffect has a built-in mechanism for handling errors that occur during the execution of the effect, so that it does not

crash the entire application. useLayoutEffect does not have this mechanism, and errors that occur during the execution of the effect

will crash the entire application.

In general, it's recommended to use useEffect as much as possible, because it is more performant and less prone to errors. useLayoutEffect

should only be used when you need to measure or update layout, and you can't achieve the same result using useEffect.

 _

244. What are the differences between Functional and Class Components?

There are two different ways to create components in ReactJS. The main differences are listed down as below,

1. Syntax:

The class components uses ES6 classes to create the components. It uses

The syntax for class component looks like as below.

function to display the HTML content in the webpage.

Note: The Pascal Case is the recommended approach to provide naming to a component.

Functional component has been improved over the years with some added features like Hooks. Here is a syntax for functional component.

2. State:

State contains information or data about a component which may change over time.

In class component, you can update the state when a user interacts with it or server updates the data using the

method. The

initial state is going to be assigned in the

types such as string, boolean, numbers, etc.

method using the object and it is possible to assign different data

A simple example showing how we use the setState() and constructor():

You didn't use state in functional components because it was only supported in class components. But over the years hooks have been

implemented in functional components which enables to use state too.

The hook can used to implement state in functional components. It returns an array with two items: the first item is current

state and the next one is a function (setState) that updates the value of the current state.

Let's see an example to demonstrate the state in functional components,

3. Props:

Props are referred to as "properties". The props are passed into React component just like arguments passed to a function. In other words,

they are similar to HTML attributes.

The props are accessible in child class component using as shown in below example,

Props in functional components are similar to that of the class components but the difference is the absence of 'this' keyword.

 _

245. What is strict mode in React?

is a useful component for highlighting potential problems in an application. Just like <Fragment> ,

does

not render any extra DOM elements. It activates additional checks and warnings for its descendants. These checks apply for development

mode only.

In the example above, the strict mode checks apply to

only.

Note: Frameworks such as NextJS has this flag enabled by default.

 _

246. What is the benefit of strict mode?

The will be helpful in the below cases,

and components only. i.e., Part of the application

i. To find the bugs caused by impure rendering where the components will re-render twice.

ii. To find the bugs caused by missing cleanup of effects where the components will re-run effects one more extra time.

iii. Identifying components with unsafe lifecycle methods.

iv. Warning about legacy string ref API usage.

v. Detecting unexpected side effects.

vi. Detecting legacy context API.

vii. Warning about deprecated findDOMNode usage

 _

247. Why does strict mode render twice in React?

StrictMode renders components twice in development mode(not production) in order to detect any problems with your code and warn

you about those problems. This is used to detect accidental side effects in the render phase. If you used

tool then it automatically enables StrictMode by default.

development

If you want to disable this behavior then you can simply remove mode.

create-react-app

To detect side effects the following functions are invoked twice:

i. Function component bodies, excluding the code inside event handlers.

ii. Functions passed to useState , useMemo , or useReducer (any other Hook)

iii. Class component's constructor , render , and

iv. Class component static

v. State updater functions

 _

248. What are the rules of JSX?

method

methods

The below 3 rules needs to be followed while using JSX in a react application.

i. Return a single root element: If you are returning multiple elements from a component, wrap them in a single parent element.

Otherwise you will receive the below error in your browser console.

ii. All the tags needs to be closed: Unlike HTML, all tags needs to closed explicitly with in JSX. This rule applies for self-closing tags(like

hr, br and img tags) as well.

iii. Use camelCase naming: It is suggested to use camelCase naming for attributes in JSX. For example, the common attributes of HTML

elements such as class , tabindex will be used as className and tabIndex .

Note: There is an exception for aria-* and data-* attributes which should be lower cased all the time.

 _

249. What is the reason behind multiple JSX tags to be wrapped?

Behind the scenes, JSX is transformed into plain javascript objects. It is not possible to return two or more objects from a function without

wrapping into an array. This is the reason you can't simply return two or more JSX tags from a function without wrapping them into a

single parent tag or a Fragment.

 _

250. How do you prevent mutating array variables?

The preexisting variables outside of the function scope including state, props and context leads to a mutation and they result in

unpredictable bugs during the rendering stage. The below points should be taken care while working with arrays variables.

i. You need to take copy of the original array and perform array operations on it for the rendering purpose. This is called local mutation.

ii. Avoid triggering mutation methods such as push, pop, sort and reverse methods on original array. It is safe to use filter, map and slice

method because they create a new array.

 _

251. What are capture phase events?

The React event is helpful to catch all the events of child elements irrespective of event propagation logic or even if the

events propagation stopped. This is useful if you need to log every click events for analytics purpose.

For example, the below code triggers the click event of parent first followed by second level child eventhough leaf child button elements

stops the propagation.

The event propagation for the above code snippet happens in the following order:

i. It travels downwards in the DOM tree by calling all event handlers.

ii. It executes event handler on the target element.

iii. It travels upwards in the DOM tree by call all event handlers above to it.

252. How does React updates screen in an application?

React updates UI in three steps,

i. Triggering or initiating a render: The component is going to triggered for render in two ways.

a. Initial render: When the app starts, you can trigger the initial render by calling creatRoot with the target DOM node followed by

invoking component's render method. For example, the following code snippet renders App component on root DOM node.

b. Re-render when the state updated: When you update the component state using the state setter function, the componen't state

automatically queues for a render.

ii. Rendering components: After triggering a render, React will call your components to display them on the screen. React will call the

root component for initial render and call the function component whose state update triggered the render. This is a recursive process

for all nested components of the target component.

iii. Commit changes to DOM: After calling components, React will modify the DOM for initial render using appendChild() DOM API and

apply minimal necessary DOM updates for re-renders based on differences between rerenders.

 _

253. How does React batch multiple state updates?

React prevents component from re-rendering for each and every state update by grouping multiple state updates within an event handler.

This strategy improves the application performance and this process known as batching. The older version of React only supported

batching for browser events whereas React18 supported for asynchronous actions, timeouts and intervals along with native events. This

improved version of batching is called automatic batching.

Let's demonstrate this automatic batching feature with a below example.

The preceeding code updated two state variables with in an event handler. However, React will perform automatic batching feature and

the component will be re-rendered only once for better performance.

 _

254. Is it possible to prevent automatic batching?

Yes, it is possible to prevent automatic batching default behavior. There might be cases where you need to re-render your component after

each state update or updating one state depends on another state variable. Considering this situation, React introduced flushSync

method from react-dom API for the usecases where you need to flush state updates to DOM immediately.

The usage of flushSync method within an onClick event handler will be looking like as below,

In the above click handler, React will update DOM at first using flushSync and second time updates DOM because of the counter setter

function by avoiding automatic batching.

 _

255. What is React hydration?

React hydration is used to add client-side JavaScript interactivity to pre-rendered static HTML generated by the server. It is used only for

server-side rendering(SSR) to enhance the initial rendering time and make it SEO friendly application. This hydration acts as a bridge to

reduce the gap between server side and client-side rendering.

After the page loaded with generated static HTML, React will add application state and interactivity by attaching all event handlers for the

respective elements. Let's demonstrate this with an example.

Consider that React DOM API(using renderToString) generated HTML for

increment the counter.

component which contains element to

The above code generates the below HTML with a header text and button component without any interactivity.

At this stage API can be used to perform hydration by attaching event handler.

After this step, you are able to run React application on server-side and hydrating the javascript bundle on client-side for smooth user

experience and SEO purposes.

 _

256. How do you update objects inside state?

You cannot update the objects which exists in the state directly. Instead, you should create a fresh new object (or copy from the existing

object) and update the latest state using the newly created object. Eventhough JavaScript objects are mutable, you need to treate objects

inside state as read-only while updating the state.

Let's see this comparison with an example. The issue with regular object mutation approach can be described by updating the user details

fields of component. The properties of component such as firstName, lastName and age details mutated in an event

handler as shown below.

Once you run the application with above user profile component, you can observe that user profile details won't be update upon entering

the input fields. This issue can be fixed by creating a new copy of object which includes existing properties through spread syntax(...obj)

and add changed values in a single event handler itself as shown below.

The above event handler is concise instead of maintaining separate event handler for each field. Now, UI displays the updated field values

as expected without an issue.

 _

257. How do you update nested objects inside state?

You cannot simply use spread syntax for all kinds of objects inside state. Because spread syntax is shallow and it copies properties for one

level deep only. If the object has nested object structure, UI doesn't work as expected with regular JavaScript nested property mutation.

Let's demonstrate this behavior with an example of User object which has address nested object inside of it.

If you try to update the country nested field in a regular javascript fashion(as shown below) then user profile screen won't be updated with

latest value.

This issue can be fixed by flattening all the fields into a top-level object or create a new object for each nested object and point it to it's

parent object. In this example, first you need to create copy of address object and update it with the latest value. Later, the adress object

should be linked to parent user object something like below.

This approach is bit verbose and not easy for deep hierarchical state updates. But this workaround can be used for few levels of nested

objects without much hassle.

 _

258. How do you update arrays inside state?

Eventhough arrays in JavaScript are mutable in nature, you need to treat them as immutable while storing them in a state. That means,

similar to objects, the arrays cannot be updated directly inside state. Instead, you need to create a copy of the existing array and then set

the state to use newly copied array.

To ensure that arrays are not mutated, the mutation operations like direct direct assigment(arr[1]='one'), push, pop, shift, unshift, splice etc

methods should be avoided on original array. Instead, you can create a copy of existing array with help of array operations such as filter,

map, slice, spread syntax etc.

For example, the below push operation doesn't add the new todo to the total todo's list in an event handler.

This issue is fixed by replacing push operation with spread syntax where it will create a new array and the UI updated with new todo.

 _

259. How do you use immer library for state updates?

Immer library enforces the immutability of state based on copy-on-write mechanism. It uses JavaScript proxy to keep track of updates to

immutable states. Immer has 3 main states as below,

i. Current state: It refers to actual state

ii. Draft state: All new changes will be applied to this state. In this state, draft is just a proxy of the current state.

iii. Next state: It is formed after all mutations applied to the draft state

Immer can be used by following below instructions,

i. Install the dependency using npm install use-immer command

ii. Replace hook with useImmer hook by importing at the top

iii. The setter function of useImmer hook can be used to update the state.

For example, the mutation syntax of immer library simplies the nested address object of user state as follows,

The preceeding code enables you to update nested objects with a conceise mutation syntax.

 _

260. What are the benefits of preventing the direct state mutations?

 _

261. What are the preferred and non-preferred array operations for updating the state?

The below table represent preferred and non-preferred array operations for updating the component state.

Action Preferred Non-preferred

Adding concat, [...arr] push, unshift

Removing filter, slice pop, shift, splice

Replacing map splice, arr[i] = someValue

sorting copying to new array reverse, sort

If you use Immer library then you can able to use all array methods without any problem.

 _

262. What will happen by defining nested function components?

Technically it is possible to write nested function components but it is not suggested to write nested function definitions. Because it leads to

unexpected bugs and performance issues.

 _

263. Can I use keys for non-list items?

Keys are primarily used for rendering list items but they are not just for list items. You can also use them React to distinguish components.

By default, React uses order of the components in

 _

264. What are the guidelines to be followed for writing reducers?

There are two guidelines to be taken care while writing reducers in your code.

i. Reducers must be pure without mutating the state. That means, same input always returns the same output. These reducers run

during rendering time similar to state updater functions. So these functions should not send any requests, schedule time outs and any

other side effects.

ii. Each action should describe a single user interaction eventhough there are multiple changes applied to data. For example, if you

"reset" registration form which has many user input fields managed by a reducer, it is suggested to send one "reset" action instead of

creating separate action for each fields. The proper ordering of actions should reflect the user interactions in the browser and it helps

a lot for debugging purpose.

